
Deep Learning: Generalization Requires Deep
Compositional Feature Space Design

Mrinal Haloi
Indian Institute of Technology, Guwahati

h.mrinal@iitg.ernet.in

Abstract—Generalization error defines the discriminability
and the representation power of a deep model. In this work,
we claim that feature space design using deep compositional
function plays a significant role in generalization along with
explicit and implicit regularizations. Our claims are being
established with several image classification experiments. We
show that the information loss due to convolution and max
pooling can be marginalized with the compositional design,
improving generalization performance. Also, we will show that
learning rate decay acts as an implicit regularizer in deep model
training.

Keywords: Generalization, Deep Compositional Design, Con-
volutional Network, Deep Learning

I. INTRODUCTION

Deep learning massive success in almost every fields rep-
resents its ability to solve complex problems. The trade-off
between model complexity and accuracy is an important area
of deep learning research. Very complex model with millions
of parameters [8], [9] proved to the state of the art solution
for many vision and natural language problems. A common
way to measure the performance or generalizability of a
deep learning model is to test it on a well discriminative
validation/test set representing the variation of samples of the
corresponding problem. Learning very complex model is a
matter of the requirements of high computing power and huge
dataset. So it’s important to understand the optimal complexity
requirement for a problem to reduce the burden of computing
power. In a recent work by Zhang et al. [6], it has been proved
that a simple 2 layers neural network with 2n+ d parameters
can represent any function for n samples in d dimensions. It
is interesting to see that a simple multilayer perceptron with
ReLU activation can fit a dataset of random labels with zero
training accuracy, but poor generalizability. The problem with
mere data memorizing is to be blamed for poor performance on
a test set. Preventing the network in memorizing data samples
in inefficient random high dimensional space is important
model design paradigm. But at the same time, it’s acceptable
for a model to memorize the data in an efficient hyperspace
representing original data distribution. Learning the original
data distribution solves the poor validation set performance
of a model. Designing an optimal network with a minimum
number of parameters will reduce computation costs and
improve performance.
How do we design model that best fit the original data distri-
bution? In this work, we will present the importance of deep

compositional feature space design with an optimal number
of parameters. We will prove the rate of feature space size
reduction matters irrespective of network parameters. Also, we
will define an optimal strategy to relate a number of parameters
requirements for a particular feature space representation.

A. Contribution

Feature space representability: There exists an optimal
number of nonlinear transformations to represent a particular
size features space without losing discriminative information.
Convolution is a linear operation projecting data from one
space to another, using a nonlinear activation final output of
convolution transformation becomes non-linear. While trans-
forming features from one space to another space there’s loss
of information. The loss of information can be understood
using singular value decomposition. We have trained multiples
network with the same number of parameters but a different
rate of feature space reduction on the CIFAR10 dataset to
prove our points. Following observations have strong impact
on the learning and the generalization performance:
• The rate of reductions of the feature space size with

respect to a number of convolution operations.
• onvolution vs max pooling for feature space reduction.

An optimal number of model parameters: There exists
an optimal number of model parameters for a model to
achieve high generalization accuracy. The number of optimal
parameters depend on the compositional design and the feature
space reduction rate.
Implicit Regularizer: Learning rate decay policy acts as an
implicit regularizer boosting the model performance and faster
learning.
Note: here with the term feature space size, we talk about
width and height of a feature map, not the number of feature
maps.

B. Related Work

Zhang et al.(2017)[6] studied the representational power of
a network with respect to the training sample size; shows that a
deep model can memorize any dataset with random labels, but
it doesn’t imply generalization. Their finding also stated that
explicit regularization alone can’t prevent poor generalization
performance. Barlett (1998)[1] showed that VC dimension is
not relevant to measure generalization performance for neural
networks, rather the L1 norm of the network weights is more
prevalent measure. They defined a fat-shattering dimension

ar
X

iv
:1

70
6.

01
98

3v
2

 [
cs

.L
G

]
 8

 J
ul

 2
01

7

for error estimation that depends on parameter magnitude.
Maass (1995)[5] has established the VC dimension bounds
for the neural network with various activation functions for
generalization analysis. Krogh et al. (1992)[4] showed that
weight decay suppresses any irrelevant weights vector compo-
nent also reduce noises, hence lowering generalization errors.
Hardt et al. (2016)[7] introduced a generalization error upper
bound for a model trained with stochastic gradient descent
for convex and non-convex optimization problems. Neyshabur
et al. (2015)[3] shows that apart from adding L2 weight
decay or implicit regularization, increasing the network size
improves generalization performance for a model learned with
stochastic gradient descent. They also asserted that with very
high number of hidden units (> samplesize) a weight decay
regularized network is considered as a convex neural net
for optimization. On the effectiveness of deep networks vs
shallow networks Mhaskar et al. (2016)[10], showed that VC
dimension and fat-shattering dimension are smaller for deep
networks than shallow networks. They argued the benefits
of compositional function design for scalability and shift
invariance in image and text data. All these above works didn’t
discuss the prominent effect of the loss of information while
data is projected from one space to another. We will show
here that the information loss effect the generalization error
for deep or shallow networks.

II. FEATURE SPACE DESIGN IN DEEP NEURAL NETWORKS

A. Information loss
The standard convolution operation used in the deep net-

work is linear. When feature space is projected from one space
to another using convolution/pooling operation there’s always
a loss of information. The information loss depends on the
projected space dimension and capacity. Loss of information
can be understood from singular value decomposition (SVD).
If Fi denotes the input for ith convolutional layer

F ji F
jT
i =WEWT (1)

F ji,proj =WT
d F

j
i (2)

F ji is the jth input map, the equation (1) refer to a special
case where the input matrix F ji F

jT
i for SVD is Hermitian and

positive definite. When data is projected from n dimension
to low-rank approximation d < n dimension, there’s loss of
information. 2-D convolution for a single feature map with
a single kernel can be interpreted as projecting data from
one space to another. Significant information is lost when
convolution stride > 1. Another way to calculate the retrived
information after convolution is using the mutual information
between two signals. For two independent signals X and Y,
mutual information I(X, Y) = 0 and maximum if X ≈ Y (fully
correlated). For X and Y we define information loss as follows:

informationloss ∝
1

I(Y ;X)
(3)

Mutual information between the original data and projected
data (convolution/pooling) is given as follows

I(F ji,proj ;F
j
i) = H(F ji)−H(F ji |F

j
i,proj) (4)

For N−D normal random vectors X ∼ N(µX , CX) and Y ∼
N(µY , CY) mutual information can be calculated as follows:

I(X;Y) = H(X)−H(X|Y)

I(X;Y) =
1

2
log(πe)N log(

|CX ||CY |
|C|

)

C =

[
CX CXY
CY X CY

] (5)

Convolution of a 2−D image with n×n kernel is equivalent
to the same with 1×n and n× 1 kernels; 2 1-D convolution.

Where C∗ are covariance matrices for respective variables.
Since we are using batch normalization also input whitening,
it’s safe to assume input/output of convolution as normal.
Apart from that convolutional kernel also initialized as normal
variables. If the convolution input X is sampled from a normal
distribution X ∼ N(µX , CX) and the kernel K ∼ N(µK , CK),
then the ouput will also be a normal with distribution Y
∼ N(µX + µK , CX + CK). Using eq 3 and eq 5 we can
calculate information loss for convolution/pooling.

B. Compositional Design of Convolutional Layer

A single convolution layer followed by max pooling results
in high information loss. Increasing the number of convolution
kernel for a layer doesn’t necessarily solve the problem.
Before reducing the feature space size it’s important to project
the feature into high dimensional hyperspaces using multiple
convolution operations. It’s important to use non-linearity
and batch normalization [13] for each convolution operation
to achieve highly uncorrelated hyperspace projection. The
stacking design best resembles the representation power of the
compositional function. Also, the VC dimension of composi-
tional design is smaller than that of shallow design [10]. With
the composition of multiples convolution operation, receptive
field grows in polynomial order. Compositional design inspired
from the visual cortex increasing receptive fields for higher
visual areas. It has been established [12] that visual cortex
receptive fields are larger for a simple scene and smaller for a
complex scene. Compositional design has smaller and larger
receptive fields those capture information related to simple and
complex objects leading to decrease in information loss.

fshallow(input) = conv− > bn− > relu(input)

receptiveF ield = filtersize
(6)

H = conv− > bn− > relu

fcomposition(input) = H(H(H(H(input))))

receptiveF ield = 1 + 4(filtersize− 1)

(7)

The above equations ((6), (7)) only valid for convolution stride
1.

C. Convolution vs Max Pooling

Claim 1.1 Strided convolution replaces max/avg pooling
with better generalization performance.
Feature space reduction using max pooling is a very crude pro-
jection into another hyper space. Max pooling operation leads

 Conv

 BN

ReLU/PReLU

N x

Conv block input

Conv block output

conv-block

max-pool

conv-block

conv-block

conv-n-a
conv stride 2

conv-block

co
nv

-b
lo

ck

co
nv

-n
-a

High information loss Low information loss

Fig. 1. Left: A convolutional block design with compositional convolutional
operations (conv-n-a means convolution followed by normalization and non-
linearity). Middle: design with max-pool for downsampling. Right: convolu-
tion for downsampling

to lossy non-linear transformation. The translational invariance
which is one of the advantages of max pooling operation
can be easily well represented using affine transformation,
achieved with strided convolution. Information loss in strided
convolution is lower than hard non-linear max pooling. Fig 1
illustrates model design with strided convolution and max
pooling.
Table II proves our claims.

D. Rate of Reduction

Claim 1.2 Minimum one convolutional operation needed
before reducing the feature space size of the model.
To minimize loss of information, projecting the data into
mutliples non-linear hyper space is required for improved
generalization. Minimum one convolution for the first layer of
the model without stride and maximum 4 convolution opera-
tions without residual connection is preferable for intermediate
layers; with residual connection, > 4 convolutional operations
can be added. It is also noteworthy that residual connection
only facilitate the training of deeper model.

III. GENERALIZATION REQUIRES FEATURE SPACE
ANALYSIS

A. VC dimension and Fat Shattering dimension

A function f : [a, b] is considered as Lipschitz function if
it satisfies the following condition for a smallest constant c:

|f(x)− f(x
′
)| ≤ c|x− x

′
| ∀x, x

′
∈ [a, b] (8)

For deep networks non-linearity like ReLU is lipschitz func-
tion for x ∈ [0,∞] and sigmoid for x ∈ Rn

VC dimension for a neural network class H with l layers,
inputs X ⊂ Rn and ReLU activation function is given as
follows [5]

limx→∞relu(x) 6= limx→−∞relu(x)

x ∈ R relu′(x) 6= 0

V Cdim(Net) = O(wllogw + wl2)

(9)

Significance of VC dimension analysis for deep convolutional
neural network training is marginal. The theretical O(n2)
complexty for n number of total parameters of convolutinal
model is rather very high upper bound for consideration in
generalization analysis. It has been established that implicit
and explicit regularization improves generalization. Fat Shat-
tering dimension of a neural network class G with l layers
and inputs X ⊂ Rn is given as follows [2] for some constant
c and λ > 0; number of points λ-shattered by G

fatG(λ) = O(
B2(cA)l(l+1)

λ2(l−1)
)

X = x ∈ Rn; ‖x‖∞ ≤ B
‖w‖1 ≤ A

(10)

Fat-shattering dimension is better bound than VC dimension
for learning algorithms, as it suggets that minimizing the
values of networks parameters is important for better gener-
alization. The values of model parameters can be minimized
using L1/L2 regularizer; achieved adding a extra penality term
to the cost function using respective norms.

E(W)L1 = E(W) + ‖W‖1
E(W)L2 = E(W) + ‖W‖2

E(W)L1+L2 = E(W) + ‖W‖1 + ‖W‖2
(11)

B. Implicit and explicit regularization

Most widely used and effective explicit regularizers are
Data Augmentation, Data Balancing, dropout, l1 regularizer,
l2 regularizer.

Data Augmentation: Due to increasing in capacity fo the
deep network and scarcity of enough discriminant labeled
data, it’s useful to generate deformed version fo original
training examples using affine transformation such as rotation,
translation, shearing, mirroring and random cropping. Apart
from that color space transformation such as RGB to Lab
or HSV, also cropping and resizing proved to be effective in
reducing overfitting.

Data Balancing: For a dataset with biased sample classes,
learning tends to overfit the class with high bias, results in poor
generalization performance. Sample balancing methods such
as uniform sampling and stratified sampling resample from
data for balanced mini batches as per the given probability
distribution of the classes.

Dropout: Dropping layer activation randomly realizes en-
semble of many functions for that layer, it helps reducing
overfitting.

L1 & L2 regularizer: L1 regularizer encourages sparsity by
minimizing the L1 norm of the model weights. L2 regularizer
penalizes model complexity, leads to small weights. The added
combination of L1 & L2 regularizations encourages sparsity
with small weights. The effectiveness of each regularization
depends on the application; in general L2 regularization works
perfectly fine.

Normalization: Batch Normalization (BN) [13] is one of
the de facto implicit regularization for faster and better gener-
alization learning of feedforward deep convolutional model.

BN normalizes the layer inputs to a zero mean and unit
variance distribution. A model with BN can put an end to the
bias term necessity. In the case of recurrent neural network
layer normalization [14] proved to be efficient than batch
normalization. Another useful implicit regularizer is Local
Response Normalization (LRN). LRN [16] is inspired from the
lateral inhibition of an excited neuron. Unbounded activations
are normalized using the values of the local window. For appli-
cations such as person re-identification [15] LRN outperforms
BN.

An experimental analysis of the effectiveness of the batch
norm and dropout can be observed from Table III

C. Feature Space Analysis

Claim 1.3: The rate of reduction of feature space size with
respect to the number of convolutional layers plays important
role in generalization.
A detailed analysis is given in Section II on the impact
of feature space design for features representation without
losing significance information. Efficient feature space design
improves generalization performance by a fair margin. Table I
proves our claim.

D. Learning Rate Decay

Claim 1.4: Learning rate decay policy acts as an implicit
regularizer for deep model learning.
Learning rate decay policy plays a major role in generalized
parameter learning with faster convergence. As the learning
progress, exploration in local neighborhood becomes more
important to do away with oscillation and ill-conditioning. The
Taylor series approxmation of the cost function f(x):

f(x) ≈ f(x0) + (x− x0)T g +
1

2
(x− x0)TH(x− x0)

f(x− εg) ≈ f(x0)− εgT g +
1

2
ε2gTHg

(12)
where g and H are the gradient and the hessian of the cost
function. When the values of H are large cost increases, this
effect is known as ill conditioning and a common probelm with
deep learning training. The learning rate ε decay alleviate the
effect of ill conditioning leading to low cost space exploration.
In practice, polynomial decay works very well in comparison
to step decay or inverse decay methods. Step decay needs more
supervision, better not to use.

From Table IV we can see that polynomial decay performs
much better than step decay.

E. Optimal Number of Parameters

In the deep model impact of VC dimension is marginal. The
fat shattering dimension plays important role in regularization.
In determining the optimal numbers of parameters feature
space design comes into play. Inefficient shallow model or
extra deep model may underfit/overfit the data resulting in poor
generalization performance. As per the discussion in Section

TABLE I
RESULTS OF 3 MAIN DESIGNS

Model #params(K) test accuracy (%)
design 1 20173 89.4
design 2 20173 86.8
design 3 20025 87.9

TABLE II
CONVOLUTION VS MAX POOLING

Model #params (K) test accuracy (%)
design 1 conv 20948 91.7

design 1 (max pooling) 20173 89.4

TABLE III
RESULTS OF EXPLICIT REGULARIZATION

Model dropout batch norm test accuracy (%)
design 1 conv yes yes 91.7
design 1 conv yes no 88.2
design 1 conv no yes 90.1

TABLE IV
RESULTS OF LEARNING RATE DECAY POLICY

Model policy test accuracy (%)
design 1 conv polynomial 91.7
design 1 conv step 90.1

TABLE V
RESULTS OF RATE OF REDUCTION

Model first layer stride test accuracy (%)
design 1 conv no 91.7

design 1 conv stride yes 89.4

TABLE VI
DEPTH

Model #params (K) test accuracy (%)
design 1 conv 20948 91.7

design 4 21573 89.3

II, feature space design plays a major role in powerfull rep-
resentation on uncorellated hyperspaces reducing information
loss.

Claim 1.5: The optimal numbers of parameters, is the
number of parameters of a optimal model designed using
feature space analysis.
Table VI and I gives an experimental validation of this claim.

IV. EXPERIMENT SETUP

Platform Details: All our experiments were carried out on a
Linux server with 128GB RAM, Xeon E5-4667 v4 processor,
and two Nvidia K80 GPUs.

TABLE VII
NETWORK DESIGN

block design 1 design 1 conv design 2 design 3 design 4
input 28 x 28 x 3 28 x 28 x 3 28 x 28 x 3 28 x 28 x 3 28 x 28 x 3

block1 1 x conv 3x3, 1, 64 1 x conv3x3, 1, 64 1 x conv3x3, 1, 64 conv3x3, 64 2 x conv3x3, 1, 64
block2 max pool 1 x conv3x3, 2, 64 max pool max pool 1 x conv3x3, 2, 64

block2 1 - - - - 1 x conv1x1, 2, 128
block3 2 x conv 3x3, 1, 128 2 x conv3x3, 1, 128 1 x conv3x3, 1, 128 1 x conv3x3, 1, 128 3 x conv3x3, 1, 128

block3 1 - - max pool - block2 1 + block3
block3 2 - - 1 x conv3x3, 1, 128 - 3 x conv3x3, 1, 128

block4 max pool 1 x conv3x3, 2, 128 max pool max pool 1 x conv3x3, 2, 128
block5 4 x conv 3x3, 1, 256 4 x conv3x3, 1, 256 4 x conv3x3, 1, 256 4 x conv3x3, 1, 256 4 x conv3x3, 1, 256
block6 max pool 1 x conv3x3, 2, 256 max pool max pool 1 x conv3x3, 2, 256
block7 1 x conv 1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096

block7 1 dropout dropout dropout dropout dropout
block8 1 x conv 1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096 1 x conv1x1, 1, 4096

block8 1 dropout dropout dropout dropout dropout
block9 1 x conv 1x1, 1, 10 1 x conv1x1, 1, 10 1 x conv1x1, 1, 10 1 x conv1x1, 1, 10 1 x conv1x1, 1, 10

Dataset: To validate our claims we have used image clas-
sification CIFAR10 [17] dataset. It has 10 object classes and
divided into two splits for training and validation. The training
split has 50000 and the validation split has 10000 images. The
size of each image is 32× 32× 3, RGB color channels.

Preprocessing: For training a randomly cropped patch of
size 28 × 28 × 3 is used. Each patch is flipped left/right and
up/down based on coin flipping results. Apart from that, we
adjust the image color by scaling its values into [0, 1] range
and changing its hue, contrast, and saturation. Each image
(training/validation) is standardized by subtracting its mean
and dividing its standard deviation.
For evaluation, the central crop of each image is selected and
resized using bilinear interpolation.

Framework: We have used TEFLA [18], a python frame-
work developed on the top of TENSORFLOW [19], for all
experiments described in this work.

Model: Table VII details model design for different exper-
iments. Conventions are followed as (repeat × conv3 ×
3, , stride, num kernels); where repeat is the number of
convolution for composition design, stride is the stride for
convolution and num kernels is the number of kernel for
each convolution layer. Each convolutional layer of a model
is followed by a batch normalization and a non-linearity (relu
for ur experiments) layer for all designs experimented in this
work.

A. Results Analysis

Table I shows performance of each model on CIFAR10
dataset validation/test set. For design 1 and design 2 with
the same number of parameters, generalization performance
varies significantly, asserting the importance of feature space
size importance and minimization of information loss.

Table II shows the importance of strided convolution for
feature space size reduction than max pooling. Significance
performance gain is observed while using convolution instead
of max pooling; implying the information loss for max pooling
is higher than strided convolution. For design 1 conv if we use

strided convolution for the first layer instead of the second
there’s a significant drop of generalization performance even
though number of parameters remain same, Table V.

Table III shows the importance of dropout and batch nor-
malization for generalization. Effect of batch normalization is
higher than the dropout.

Table IV proves our claim that learning rate decay policy
also acts as implicit regularizer improving generalization per-
formance. polynomial decay is very robust and requires min-
imal supervision, yielding better generalization performance.

Performance doesn’t always depend on more depth, an
optimal design performs better than a deeper design, from
Table VI we can see the experimental results of two design.
From this, we can conclude that there exists an optimal number
of parameters for generalization.

V. CONCLUSION

In this work, a detailed analysis of deep model generaliza-
tion performance trade-off is presented. We showed that the
compositional feature space design with implicit and explicit
regularizations play important role in achieving better perfor-
mance. In terms of model complexity traditional measure, VC
dimension doesn’t give much information, but fat-shattering
dimension analysis has an indirect effect on generalization.
From our experiment, we showed that the optimal model
satisfies compositional design criteria and have the optimal
number of parameters. We wrap up this work with the claim
that combination of compositional feature space design with
explicit and implicit generalization and efficient optimization
algorithms give the best-generalized performance for any
dataset.

REFERENCES

[1] Peter L Bartlett. The Sample Complexity of Pattern Classification with
Neural Networks - The Size of the Weights is More Important than the
Size of the Network. IEEE Trans. Information Theory, 1998.

[2] Bartlett, P. L. For valid generalization, the size of the weights is more
important than the size of the network. Advances in neural information
processing systems, 134-140, 1997

[3] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the
real inductive bias: On the role of implicit regularization in deep learning.
CoRR, abs/1412.6614, 2014.

[4] Krogh, A. and Hertz, J. A. A simple weight decay can improve general-
ization. In Proc. NIPS, pp. 950957, 1992.

[5] Maass, W. Vapnik-Chervonenkis dimension of neural nets. The handbook
of brain theory and neural networks, pp. 1000-1003, 1995.

[6] Zhang, Chiyuan, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.
Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016.

[7] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize
better: Stability of stochastic gradient descent. In ICML, 2016.

[8] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. Inception-v4, inception-
resnet and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016.

[9] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016.

[10] Mhaskar, H., Liao, Q., Poggio, T. Learning functions: When is deep
better than shallow. arXiv preprint arXiv:1603.00988, 2016.

[11] Ioffe, S., Szegedy, C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[12] Trappenberg, T. P., Rolls, E. T., Stringer, S. M. Effective size of
receptive fields of inferior temporal visual cortex neurons in natural
scenes. Advances in neural information processing systems, 1, 293-300,
2002.

[13] Ioffe, S., Szegedy, C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[14] Ba, J. L., Kiros, J. R., Hinton, G. E. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[15] Varior, R. R., Haloi, M., Wang, G. Gated siamese convolutional neural
network architecture for human re-identification. In European Conference
on Computer Vision (pp. 791-808). Springer International Publishing,
2016.

[16] Krizhevsky, A., Sutskever, I., Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097-1105), 2012.

[17] Krizhevsky, A., Hinton, G. Learning multiple layers of features from tiny
images. Technical report, Department of Computer Science, University of
Toronto, 2009

[18] https://github.com/n3011/tefla
[19] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

... Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

VI. APPENDIX

A. Effective receptive field

jout = jin ∗ s
rout = rin + (k − 1) ∗ jin

(13)

where j is the distance between two adjacent feature maps;
s is the convolution stride, k is the kernel size and r is the
receptive fields size.

B. Learning rate decay policy

Commonly used learning rate decay policies are given
below:

fixed :λ = c (14)

exponential :λiter = λ0 ∗ γiter (15)

step :λiter = λ0 ∗ γ
iter
step (16)

inverse :λiter = λ0 ∗ (1 + γ ∗ iter)−c (17)

poly :λiter = λ0 ∗ (1−
iter

max iter
)c (18)

sigmoid :λiter = λ0 ∗
1

1 + exp(−γ+(iter−step)) (19)

where c and γ are two constants; λ0 is the initial learning
rate, λiter is the learning for iter (current iteration). max iter
is the maximum number of iteration for learning and step is
the step for changing learning rate for step policy.

C. Mutual information for normal random variables

For a normal random variables X ∼ N(µ,C), entropy of X
is calculated as follows

H(X) = −Xloga(X)

= −
∫
p(x)logap(x)dx

=

∫
p(x)[

1

2
loga(2π)

n|C|+ 1

2
(x− µ)TC−1(x− µ)logae]dx

=
1

2
loga(2π)

n|C|+ 1

2
logaeE[(x− µ)TC−1(x− µ)]

=
1

2
loga(2π)

n|C|+ 1

2
nlogae

=
1

2
loga(2πe)

n|C|

For another normal random variables Y ∼ (Nµ,CY); the
mutual information between X and Y can be calculated as
follows:

I(X;Y) = H(X)−H(X|Y)

= H(X) +H(Y)−H(X,Y)

=
1

2
loga(2πe)

n|C|+ 1

2
loga(2πe)

n|CY | −
1

2
loga(2πe)

n|CXY |

=
1

2
loga(2πe)

n |C||CY |
|CXY |

http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1603.00988
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1603.04467

	I Introduction
	I-A Contribution
	I-B Related Work

	II Feature space design in deep neural networks
	II-A Information loss
	II-B Compositional Design of Convolutional Layer
	II-C Convolution vs Max Pooling
	II-D Rate of Reduction

	III Generalization requires feature space analysis
	III-A VC dimension and Fat Shattering dimension
	III-B Implicit and explicit regularization
	III-C Feature Space Analysis
	III-D Learning Rate Decay
	III-E Optimal Number of Parameters

	IV Experiment Setup
	IV-A Results Analysis

	V Conclusion
	References
	VI Appendix
	VI-A Effective receptive field
	VI-B Learning rate decay policy
	VI-C Mutual information for normal random variables

